Three-Dimensional Quantitative Flow Visualization Around a Thrust Reverser

Author:

Hysa IldaORCID,Tuinstra Marthijn,Sciacchitano Andrea,Scarano Fulvio,Schwartz Nicholas,Harrison Charles,Gebbink Roy1

Affiliation:

1. German–Dutch Wind Tunnels, 8316 PR Marknesse, The Netherlands

Abstract

Volumetric particle tracking velocimetry measurements are performed in a low-speed wind tunnel to study the flow around a 1:12-scale aircraft model with jet engines operating with thrust reversers. The engine jet and freestream flow velocity are varied to yield a jet to freestream velocity ratio of [Formula: see text] ranging from 1.5 to 6. Measurements at such scale ([Formula: see text]) require the use of strongly scattering helium-filled soap bubbles as flow tracers, which are introduced in both the jet and the freestream flow. The tracer’s three-dimensional motion is determined using an array of cameras and a Lagrangian particle tracking algorithm. The mean velocity field reveals the jet inner structure as well as its interaction with the freestream, the ground board, the nacelle, the fuselage, and the horizontal and vertical tails. The experiments allow detection of exhaust reingestion as well as the aerodynamic interference with control surfaces at the tail segments in a single measurement volume. The results are in good agreement with conventional temperature rake measurements while adding details of the flow topology and of the large-scale unsteady flow fluctuations. Finally, the jet reversal characteristics with varying freestreams and nozzle pressure ratios are assessed, demonstrating the feasibility and versatility of volumetric velocimetry measurements for industrial aerodynamics.

Funder

NLR—Royal Netherlands Aerospace Centre and Gulfstream

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3