Hierarchical Framework for Optimizing Wildfire Surveillance and Suppression Using Human-Autonomous Teaming

Author:

Al-Husseini Mahdi1ORCID,Wray Kyle H.1,Kochenderfer Mykel J.1

Affiliation:

1. Stanford Intelligent Systems Laboratory, Stanford, California 94305

Abstract

The integration of manned and unmanned aircraft can help improve wildfire response. Wildfire containment failures occur when the resources available to first responders, who execute the initial stages of wildfire management referred to as the initial attack, are ineffective or insufficient. Initial attack surveillance and suppression models have linked action spaces and objectives, making their optimization computationally challenging. The initial attack may be formulated as a multi-agent partially observable Markov decision process (MPOMDP). We divide the initial attack MPOMDP into surveillance and suppression processes with their respective planners operating on different, but constant, time scales. A hierarchical framework iterates between surveillance and suppression planners while also providing collision avoidance. This framework is exemplified by a set of multirotor unmanned aircraft surveying an initial attack fire while a manned helicopter suppresses the fire with a water bucket. Wildfire-specific solver extensions are formulated to reduce the otherwise vast action spaces. The hierarchical framework outperforms firefighting techniques and a myopic baseline by up to 242% for moderate wildfires and 60% for rapid wildfires when simulated in abstracted and actual case studies. We also validate the early dispatching of additional suppression assets using regression models to ensure wildfire containment within thresholds established by wildfire agencies.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3