Benchmarking of Aerodynamic Models for Isolated Propellers Operating at Positive and Negative Thrust

Author:

Goyal Jatinder1ORCID,Sinnige Tomas1ORCID,Avallone Francesco2,Ferreira Carlos1

Affiliation:

1. Delft University of Technology, 2629 HS Delft, The Netherlands

2. Polytechnic University of Turin, 10129 Turin, Italy

Abstract

Operating a conventional propeller at negative thrust results in the operation of positively cambered blade sections at negative angles of attack, leading to flow separation. Consequently, accurately simulating the aerodynamics of propellers operating at negative thrust poses a greater challenge than at positive thrust. This study offers a comprehensive assessment of the aerodynamic modeling capabilities of numerical methods, spanning low to high fidelity, for computing propeller performance across both positive and negative thrust regimes. Low-fidelity methods, namely, blade-element momentum and lifting line theories, effectively predict propeller performance trends at positive thrust. However, they fail to capture trends at negative thrust beyond the maximum power output point due to the neglect of three-dimensional flow effects. Both steady and unsteady Reynolds-averaged Navier–Stokes (RANS) simulations with [Formula: see text] perform well across both positive and negative thrust conditions, with errors below 2% for both thrust and power magnitudes near the maximum power output point. Lattice-Boltzmann very-large-eddy simulations (LB-VLESs) with [Formula: see text] exhibit excellent agreement with experimental data with less than 1% error near the maximum power output point but with significant computational costs. Conversely, LB-VLESs with [Formula: see text] offer a more economical approach to capture general trends with the computational cost of the same order as unsteady RANS. However, wall models introduce errors in modeling flow separation, leading to a 16% overestimation of power magnitude near the maximum power output point. The results highlight the necessity of using tools with increased fidelity levels when considering propeller operation at negative thrust compared to the conventional positive thrust regime.

Funder

H2020 Societal Challenges

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3