New Analytical Solutions for Elastoplastic Buckling of Non-Lévy‐Type Rectangular Plates

Author:

Hu Zhaoyang1,Zhou Chao1ORCID,Ni Zhuofan1,Zheng Xinran1,Wang Zixuan1,Xu Dian1,Wang Bo1,Li Rui1

Affiliation:

1. Dalian University of Technology, 116024 Dalian, People’s Republic of China

Abstract

Analytical solutions for elastoplastic buckling of plates play a crucial role in providing benchmark results and facilitating fast structural analyses for preliminary designs. However, the analytical solutions for elastoplastic buckling of plates remain incomplete due to the inherent mathematical difficulties associated with higher-order partial differential equations and material nonlinearity. Consequently, the existing analytical solutions for rectangular plates are only applicable to those with Lévy‐type boundary conditions. To address the limitation, this study extends a novel symplectic superposition method to obtain new analytical elastoplastic buckling solutions of non-Lévy‐type rectangular plates, where both the incremental theory (IT) and deformation theory (DT) are adopted. Comprehensive benchmark elastoplastic buckling loads are presented and validated by the modified differential quadrature method. The plastic buckling paradox is explicitly observed, which highlights a significant disparity between the IT and DT in predicting buckling loads for relatively thick plates. Furthermore, our analysis reveals that the DT provides an optimal load ratio for buckling resistance, while no such finding is observed with the IT. The stability criterion curves are plotted using the elastic theory and plastic theories (IT and DT) to further reveal the importance of incorporating the effect of plasticity as well as to provide a useful guideline for the relevant analyses and designs.

Funder

National Natural Science Foundation of China

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3