Better neural images by combining ultrahigh field strength MRI with innovative MRI sequences

Author:

Anuhya Dayal,Andin Ngwa,Brian Rutt,Arutselvan Natarajan,Edwin ChangORCID

Abstract

Better MRI scanning technologies and protocols can provide insights into neurological disorders. In this review, we describe the basic concepts of MRI and, in the process, we convey to the reader the relevance of MRI as a high-resolution imaging modality of tissue structure and metabolism. We outline the main parameters for improving MRI resolution and sensitivity for the ultimate goal of optimizing the diagnosis of neurological diseases. A key to obtaining high-resolution images by MRI is the strength of the magnet’s external field strength (Bo). The higher the field strength, the better the signal-to-noise (SNR) of acquired signals. Hence, this results in improved sensitivity and resolution of the reconstructed images. This article recapitulates the advancement of MRI technology towards Ultra-High-Field Strength (UHF) apparatus and the consequent benefits in SNR. Other keys towards improving MRI images include deftly modifying the parameters of longitudinal magnetization relaxation time (T1), transverse magnetization relaxation time (T2), repetition times between radiofrequency (RF) pulses (TR), and the time of reading post-pulse (TE). Such parameters can be controlled through acquisition software associated with the MRI machines. The review profiles the cumulative efforts by researchers to complement UHF-MRI hardware with innovative RF pulse sequences protocols such as Diffusion Weighted Imaging (DWI), Pulse Gradient Spin Echo (PGSE), Oscillating Gradient Spin Echo (OGSE), Blood Oxygen Level Dependent (BOLD)-MRI and Arterial Spin Label (ASL)-MRI. Collectively, these advances in both MRI hardware and software have pushed the field to attain a mesoscopic level of resolution. Further enhancements in analyzing MRI images through Artificial Intelligence (AI) algorithms may advance resolutions beyond the mesoscopic stage and perhaps even toward the microscopic resolution of living tissue.

Publisher

Peertechz Publications Private Limited

Subject

Pharmacology (medical)

Reference64 articles.

1. 1. Schild HH. MRI Made Easy (well almost). Schering AG Berlin 1990.

2. 2. Hopkins J. Bloomberg School of Public Health (August, 24, 2015). Principles of fMRI Part 1, Module 7: K-space. YouTube. https://www.youtube.com/watch?v=FI5frNsRTI4&list=PLfXA4opIOVrGHncHRxI3Qa5GeCSudwmxM&index=8.

3. 3. Jhamb TK, Rejathalal V, Govindan VK. A Review on Image Reconstruction through MRI k-Space Data. Mod Educ Comput Sci. 2015; 7:42-59.

4. 4. Moratal D, Vallés-Luch A, Martí-Bonmatí L, Brummer M. k-Space tutorial: an MRI educational tool for a better understanding of k-space. Biomed Imaging Interv J. 2008 Jan;4(1):e15. doi: 10.2349/biij.4.1.e15. Epub 2008 Jan 1. PMID: 21614308; PMCID: PMC3097694.

5. 5. LOFT Lab. Introduction to k-Space. YouTube. 2020. https://www.youtube.com/watch?v=GF7Z8Sd9qYE

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3