Krüppel-like factor 4 promotes autophagy in macrophages under high glucose concentration by inhibiting the AKT/mTOR signaling pathway

Author:

Rui Zhang,Sisi Chen,Tongdan Wang,Pei Yu

Abstract

Background: Diabetic atherosclerosis (AS) is the main cause of disability and death in diabetes. In the progression of AS, autophagic activity plays an important role. Krüppel-like factor 4 (KLF4) is a member of the zinc finger protein transcription factor family and is believed to play a protective role in the pathogenesis of atherosclerosis. This study aimed to explore the role of KLF4 in diabetic atherosclerosis and the autophagic mechanism. Methods: A diabetic mouse model was established and the expression level of KLF4 protein in the aorta of the mice was detected after a high-fat diet. The effects of KLF4 on cholesterol content, apoptosis, autophagy-related proteins, and the AKT/mTOR signaling pathway of THP-1 macrophages were also evaluated. Results: The expression level of KLF4 protein in the aorta of diabetic mice was decreased. Meanwhile, overexpression of KLF4 in THP-1 macrophages significantly decreased cholesterol accumulation, increased beclin-1 expression, decreased P62 expression, enhanced LC3 fluorescence intensity decreased cell apoptosis and p-mTOR and p-AKT expression were decreased under the condition of high glucose. After the reduction of KLF4 expression, the result is reversed. Conclusion: KLF4 induces autophagy by inhibiting the AKT/mTOR pathway and alleviates cholesterol deposition in THP-1 macrophages under high glucose concentration.

Publisher

Peertechz Publications Private Limited

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3