Variable opportunities for outcrossing result in hotspots of novel genetic variation in a pathogen metapopulation

Author:

Laine Anna-Liisa12ORCID,Barrès Benoit1ORCID,Numminen Elina1,Siren Jukka P13

Affiliation:

1. Research Centre for Ecological Change, Organismal and Evolutionary Biology, University of Helsinki, Helsinki, Finland

2. Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse, Switzerland

3. Helsinki Institute for Information Technology, Department of Computer Science, Aalto University, Espoo, Finland

Abstract

Many pathogens possess the capacity for sex through outcrossing, despite being able to reproduce also asexually and/or via selfing. Given that sex is assumed to come at a cost, these mixed reproductive strategies typical of pathogens have remained puzzling. While the ecological and evolutionary benefits of outcrossing are theoretically well-supported, support for such benefits in pathogen populations are still scarce. Here, we analyze the epidemiology and genetic structure of natural populations of an obligate fungal pathogen, Podosphaera plantaginis. We find that the opportunities for outcrossing vary spatially. Populations supporting high levels of coinfection –a prerequisite of sex – result in hotspots of novel genetic diversity. Pathogen populations supporting coinfection also have a higher probability of surviving winter. Jointly our results show that outcrossing has direct epidemiological consequences as well as a major impact on pathogen population genetic diversity, thereby providing evidence of ecological and evolutionary benefits of outcrossing in pathogens.

Funder

European Research Council

Academy of Finland

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference54 articles.

1. Population structure and diversity in sexual and asexual populations of the pathogenic fungus melampsora lini;Barrett;Molecular Ecology,2008

2. Approximate bayesian computation in population genetics;Beaumont;Genetics,2002

3. Approximate bayesian computation in evolution and ecology;Beaumont;Annual Review of Ecology, Evolution, and Systematics,2010

4. Having sex, yes, but with whom? inferences from fungi on the evolution of anisogamy and mating types;Billiard;Biological Reviews,2011

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3