Natural variation in the consequences of gene overexpression and its implications for evolutionary trajectories

Author:

Robinson DeElegant1ORCID,Place Michael2,Hose James3,Jochem Adam3,Gasch Audrey P234ORCID

Affiliation:

1. Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, United States

2. Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States

3. Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, United States

4. Department of Medical Genetics, University of Wisconsin-Madison, Madison, United States

Abstract

Copy number variation through gene or chromosome amplification provides a route for rapid phenotypic variation and supports the long-term evolution of gene functions. Although the evolutionary importance of copy-number variation is known, little is understood about how genetic background influences its tolerance. Here, we measured fitness costs of over 4000 overexpressed genes in 15 Saccharomyces cerevisiae strains representing different lineages, to explore natural variation in tolerating gene overexpression (OE). Strain-specific effects dominated the fitness costs of gene OE. We report global differences in the consequences of gene OE, independent of the amplified gene, as well as gene-specific effects that were dependent on the genetic background. Natural variation in the response to gene OE could be explained by several models, including strain-specific physiological differences, resource limitations, and regulatory sensitivities. This work provides new insight on how genetic background influences tolerance to gene amplification and the evolutionary trajectories accessible to different backgrounds.

Funder

National Cancer Institute

U.S. Department of Energy

National Institutes of Health

National Human Genome Research Institute

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3