Development and evaluation of a live birth prediction model for evaluating human blastocysts from a retrospective study

Author:

Liu Hang1ORCID,Zhang Zhuoran2,Gu Yifan34,Dai Changsheng1,Shan Guanqiao1ORCID,Song Haocong1,Li Daniel5,Chen Wenyuan1,Lin Ge3467,Sun Yu1589ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Toronto

2. School of Science and Engineering, The Chinese University of Hong Kong-Shenzhen

3. Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University

4. Reproductive and Genetic Hospital of CITIC-Xiangya

5. Department of Electrical and Computer Engineering

6. Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission

7. National Engineering Research Center of Human Stem Cells

8. Institute of Biomedical Engineering, University of Toronto

9. Department of Computer Science, University of Toronto

Abstract

Background:In infertility treatment, blastocyst morphological grading is commonly used in clinical practice for blastocyst evaluation and selection, but has shown limited predictive power on live birth outcomes of blastocysts. To improve live birth prediction, a number of artificial intelligence (AI) models have been established. Most existing AI models for blastocyst evaluation only used images for live birth prediction, and the area under the receiver operating characteristic (ROC) curve (AUC) achieved by these models has plateaued at ~0.65.Methods:This study proposed a multimodal blastocyst evaluation method using both blastocyst images and patient couple’s clinical features (e.g., maternal age, hormone profiles, endometrium thickness, and semen quality) to predict live birth outcomes of human blastocysts. To utilize the multimodal data, we developed a new AI model consisting of a convolutional neural network (CNN) to process blastocyst images and a multilayer perceptron to process patient couple’s clinical features. The data set used in this study consists of 17,580 blastocysts with known live birth outcomes, blastocyst images, and patient couple’s clinical features.Results:This study achieved an AUC of 0.77 for live birth prediction, which significantly outperforms related works in the literature. Sixteen out of 103 clinical features were identified to be predictors of live birth outcomes and helped improve live birth prediction. Among these features, maternal age, the day of blastocyst transfer, antral follicle count, retrieved oocyte number, and endometrium thickness measured before transfer are the top five features contributing to live birth prediction. Heatmaps showed that the CNN in the AI model mainly focuses on image regions of inner cell mass and trophectoderm (TE) for live birth prediction, and the contribution of TE-related features was greater in the CNN trained with the inclusion of patient couple's clinical features compared with the CNN trained with blastocyst images alone.Conclusions:The results suggest that the inclusion of patient couple’s clinical features along with blastocyst images increases live birth prediction accuracy.Funding:Natural Sciences and Engineering Research Council of Canada and the Canada Research Chairs Program.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Research Chairs

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3