Microtubule-mediated GLUT4 trafficking is disrupted in insulin-resistant skeletal muscle

Author:

Knudsen Jonas R12ORCID,Persson Kaspar W1,Henriquez-Olguin Carlos13,Li Zhencheng14,Di Leo Nicolas1ORCID,Hesselager Sofie A1,Raun Steffen H5,Hingst Janne R6,Trouillon Raphaël7,Wohlwend Martin8,Wojtaszewski Jørgen FP1,Gijs Martin AM9,Jensen Thomas Elbenhardt1ORCID

Affiliation:

1. August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen

2. Heart and Skeletal Muscle Biology, Global Drug Discovery, Novo Nordisk

3. Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae

4. College of Physical Education, Chongqing University

5. Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen

6. Clinical Drug Development, Novo Nordisk

7. Department of Electrical Engineering, Polytechnique Montréal

8. Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne

9. Microsystems Laboratory 2, Institute of Electrical and Micro Engineering, École Polytechnique Fédérale de Lausanne

Abstract

Microtubules serve as tracks for long-range intracellular trafficking of glucose transporter 4 (GLUT4), but the role of this process in skeletal muscle and insulin resistance is unclear. Here, we used fixed and live-cell imaging to study microtubule-based GLUT4 trafficking in human and mouse muscle fibers and L6 rat muscle cells. We found GLUT4 localized on the microtubules in mouse and human muscle fibers. Pharmacological microtubule disruption using Nocodazole (Noco) prevented long-range GLUT4 trafficking and depleted GLUT4-enriched structures at microtubule nucleation sites in a fully reversible manner. Using a perifused muscle-on-a-chip system to enable real-time glucose uptake measurements in isolated mouse skeletal muscle fibers, we observed that Noco maximally disrupted the microtubule network after 5 min without affecting insulin-stimulated glucose uptake. In contrast, a 2-hr Noco treatment markedly decreased insulin responsiveness of glucose uptake. Insulin resistance in mouse muscle fibers induced either in vitro by C2 ceramides or in vivo by diet-induced obesity, impaired microtubule-based GLUT4 trafficking. Transient knockdown of the microtubule motor protein kinesin-1 protein KIF5B in L6 muscle cells reduced insulin-stimulated GLUT4 translocation while pharmacological kinesin-1 inhibition in incubated mouse muscles strongly impaired insulin-stimulated glucose uptake. Thus, in adult skeletal muscle fibers, the microtubule network is essential for intramyocellular GLUT4 movement, likely functioning to maintain an insulin-responsive cell surface recruitable GLUT4 pool via kinesin-1-mediated trafficking.

Funder

Novo Nordisk Fonden

Lundbeckfonden

Sundhed og Sygdom, Det Frie Forskningsråd

Danish Diabetes Academy

Independent Research Fund Denmark

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3