Splicing in a single neuron is coordinately controlled by RNA binding proteins and transcription factors

Author:

Thompson Morgan1,Bixby Ryan1,Dalton Robert1,Vandenburg Alexa1,Calarco John A2ORCID,Norris Adam D1ORCID

Affiliation:

1. Biological Sciences, Southern Methodist University, Dallas, United States

2. Cell & Systems Biology, University of Toronto, Toronto, Canada

Abstract

Single-cell transcriptomes are established by transcription factors (TFs), which determine a cell's gene-expression complement. Post-transcriptional regulation of single-cell transcriptomes, and the RNA binding proteins (RBPs) responsible, are more technically challenging to determine, and combinatorial TF-RBP coordination of single-cell transcriptomes remains unexplored. We used fluorescent reporters to visualize alternative splicing in single Caenorhabditis elegans neurons, identifying complex splicing patterns in the neuronal kinase sad-1. Most neurons express both isoforms, but the ALM mechanosensory neuron expresses only the exon-included isoform, while its developmental sister cell the BDU neuron expresses only the exon-skipped isoform. A cascade of three cell-specific TFs and two RBPs are combinatorially required for sad-1 exon inclusion. Mechanistically, TFs combinatorially ensure expression of RBPs, which interact with sad-1 pre-mRNA. Thus a combinatorial TF-RBP code controls single-neuron sad-1 splicing. Additionally, we find ‘phenotypic convergence,’ previously observed for TFs, also applies to RBPs: different RBP combinations generate similar splicing outcomes in different neurons.

Funder

Canadian Institutes of Health Research

Natural Sciences and Engineering Research Council of Canada

Oak Ridge Associated Universities

NIGMS

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3