Hypothemycin, a fungal natural product, identifies therapeutic targets in Trypanosoma brucei

Author:

Nishino Mari12,Choy Jonathan W34,Gushwa Nathan N3,Oses-Prieto Juan A5,Koupparis Kyriacos6,Burlingame Alma L5,Renslo Adam R245,McKerrow James H27,Taunton Jack78

Affiliation:

1. Tetrad Graduate Program, University of California, San Francisco, San Francisco, United States

2. Center for Discovery and Innovation in Parasitic Diseases, University of California, San Francisco, San Francisco, United States

3. Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States

4. Small Molecule Discovery Center, University of California, San Francisco, San Francisco, United States

5. Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States

6. Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, United States

7. Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States

8. Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States

Abstract

Protein kinases are potentially attractive therapeutic targets for neglected parasitic diseases, including African trypanosomiasis caused by the protozoan, Trypanosoma brucei. How to prioritize T. brucei kinases and quantify their intracellular engagement by small-molecule inhibitors remain unsolved problems. Here, we combine chemoproteomics and RNA interference to interrogate trypanosome kinases bearing a Cys-Asp-Xaa-Gly motif (CDXG kinases). We discovered that hypothemycin, a fungal polyketide previously shown to covalently inactivate a subset of human CDXG kinases, kills T. brucei in culture and in infected mice. Quantitative chemoproteomic analysis with a hypothemycin-based probe revealed the relative sensitivity of endogenous CDXG kinases, including TbGSK3short and a previously uncharacterized kinase, TbCLK1. RNAi-mediated knockdown demonstrated that both kinases are essential, but only TbCLK1 is fully engaged by cytotoxic concentrations of hypothemycin in intact cells. Our study identifies TbCLK1 as a therapeutic target for African trypanosomiasis and establishes a new chemoproteomic tool for interrogating CDXG kinases in their native context.

Funder

Howard Hughes Medical Institute

National Institutes of Health

Sandler Foundation

National Science Foundation

Achievement Rewards for College Students Wells Fargo Scholarship

Genentech Predoctoral Fellowship

Simons Foundation

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3