Individual long non-coding RNAs have no overt functions in zebrafish embryogenesis, viability and fertility

Author:

Goudarzi Mehdi1ORCID,Berg Kathryn1,Pieper Lindsey M1,Schier Alexander F12345ORCID

Affiliation:

1. Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States

2. Center for Brain Science, Harvard University, Cambridge, United States

3. FAS Center for Systems Biology, Harvard University, Cambridge, United States

4. Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, United States

5. Biozentrum, University of Basel, Basel, Switzerland

Abstract

Hundreds of long non-coding RNAs (lncRNAs) have been identified as potential regulators of gene expression, but their functions remain largely unknown. To study the role of lncRNAs during vertebrate development, we selected 25 zebrafish lncRNAs based on their conservation, expression profile or proximity to developmental regulators, and used CRISPR-Cas9 to generate 32 deletion alleles. We observed altered transcription of neighboring genes in some mutants, but none of the lncRNAs were required for embryogenesis, viability or fertility. Even RNAs with previously proposed non-coding functions (cyrano and squint) and other conserved lncRNAs (gas5 and lnc-setd1ba) were dispensable. In one case (lnc-phox2bb), absence of putative DNA regulatory-elements, but not of the lncRNA transcript itself, resulted in abnormal development. LncRNAs might have redundant, subtle, or context-dependent roles, but extrapolation from our results suggests that the majority of individual zebrafish lncRNAs have no overt roles in embryogenesis, viability and fertility.

Funder

NIH Office of the Director

Leopoldina

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3