Small deviations in kinematics and body form dictate muscle performances in the finely tuned avian downstroke

Author:

Deetjen Marc E.1ORCID,Chin Diana D.1ORCID,Heers Ashley M.12ORCID,Tobalske Bret W.3ORCID,Lentink David14ORCID

Affiliation:

1. Department of Mechanical Engineering, Stanford University, Palo Alto, CA, USA

2. Department of Biological Sciences, California State University, Los Angeles, CA, USA

3. Division of Biological Sciences, University of Montana, Missoula, MT, USA

4. Faculty of Science and Engineering, University of Groningen, The Netherlands

Abstract

Avian takeoff requires peak pectoralis muscle power to generate sufficient aerodynamic force during the downstroke. Subsequently the much smaller supracoracoideus recovers the wing during the upstroke. How the pectoralis work loop is tuned to power flight is unclear. We integrate wingbeat-resolved muscle, kinematic and aerodynamic recordings in vivo with a new mathematical model to disentangle how the pectoralis muscle overcomes wing inertia and generates aerodynamic force during takeoff in doves. Doves reduce the angle of attack of their wing mid-downstroke to efficiently generate aerodynamic force, resulting in an aerodynamic power dip, that allows transferring excess pectoralis power into tensioning the supracoracoideus tendon to assist the upstroke—improving the pectoralis work loop efficiency simultaneously. Integrating extant bird data, our model shows how the pectoralis of birds with faster wingtip speed need to generate proportionally more power. Finally, birds with disproportionally larger wing inertia need to activate the pectoralis earlier to tune their downstroke. Ecology Doves improve their wingbeat efficacy without elevating maximum pectoralis power by angling their wings mid-downstroke to efficiently generate aerodynamic force while simultaneously tensioning the supracoracoideus tendon to assist the upstroke.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3