Preparation and Evaluation of Efavirenz Loaded Solid Lipid Nanoparticle for improving Oral Bioavailability

Author:

Srivastava Ashish1,Gupta Harshita1

Affiliation:

1. Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, India.

Abstract

Efavirenz (EFV) is a highly lipophilic, oral non-nucleoside reverse transcriptase inhibitor reported to have poor aqueous solubility and bioavailability used for the treatment of HIV. In the present research work, solid lipid nanoparticles loaded with efavirenz were formulated for oral drug delivery and to increase the bioavailability of efavirenz. Solid lipid nanoparticles loaded with efavirenz were prepared through the microemulsion method followed by the lyophilization technique using glyceryl monostearate as lipid and Tween 80 as a surfactant. Solid lipid nanoparticle formulation was evaluated using different parameters including Scanning electron microscopy (SEM), drug entrapment efficiency (EE%), in vitro drug release study, differential scanning calorimetry, and powder X-ray diffractometry. Solid lipid nanoparticles loaded efavirenz showed 60.41% drug entrapment. Differential scanning calorimetry and powder X-ray diffractometry study indicate solid lipid nanoparticles loaded efavirenz is crystalline, stable and there is no interaction between the excipients and drug. In vitro drug release study of EFV-SLN showed 88.2±0.12% drug release which is better as compared to marketed formulation drug release. EFV-SLN drug release study data demonstrated a better fit for the first-order kinetics and confirmed the non-Fickian-diffusion mechanism. Prepared SLN formulation has shown good stability at 45∘C and 75% relative humidity (RH) for 150 days. These results determined that the developed EFV-SLN formulation exhibited a promising antiviral activity to treat HIV and has great potential for boosting the oral bioavailability of Efavirenz.

Publisher

A and V Publications

Subject

Pharmacology (medical),Pharmacology, Toxicology and Pharmaceutics (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ultrasonic-enhanced potential of curcumin nanoformulations in various solvents;PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON RESEARCH ADVANCES IN ENGINEERING AND TECHNOLOGY - ITechCET 2022;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3