In Silico Prediction of Metabolite in Petroselinum Crispum in Inhibiting Androgen Receptor as Treatment for Alopecia

Author:

Hasanuddin Silviana1,Gozali Dolih2,Arba Muhammad3,Fitra Ramadhan Dwi Syah4,Mustarichie Resmi1

Affiliation:

1. Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia.

2. Pharmaceutical Department, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia.

3. Faculty of Pharmacy, Universitas Halu Oleo, Kendari, Indonesia.

4. Department of Pharmacy, Universitas Mandala Waluya, Kendari, Indonesia.

Abstract

Introduction: Alopecia is a hair loss that occur continuously and may occur in men, women and children. The causes of alopecia, including the use of cosmetics, medication, stress, postpartum period, hormonal disorders, and scalp infection. The purpose of this research is to determine the compounds contained in Petroselinum crispum that have the potential as antialopecia agents by predicting ligand-receptor binding and binding modes, predicting ADME by using Lipinski's rule, and also comparing the effectiveness with native ligand and minoxidil. Methodology: The process starts with protein and ligand structure preparation, then docking using Autodock Vina. Afterward, analyzed and visualized of the ligands docking, and predicted the ADME according to lipinski's rules using SwissADME and toxicity using PASS predistion. Result: There were 24 compounds found in Petroselinum crispum. Molecular docking simulation showed that six compounds had better binding affinities than minoxidil. Based on the results of prediction of ADMET values using the Lipinski rule and PASS Prediction, compound that are thought to have good activity is (+)–Marmesin compared to minoxidil. Conclusion: (+)–Marmesin to have better interactions with the androgen receptor, but not better than native ligands. thus, (+)–Marmesin can be used as antialopecia agents alternative terapy.

Publisher

A and V Publications

Subject

Pharmacology (medical),Pharmacology, Toxicology and Pharmaceutics (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3