In vitro Antioxidant and Antidiabetic activity of Silver Nanoparticles Synthesized using Catharanthus roseus leaves

Author:

E Deepika1,KS Santhy1

Affiliation:

1. Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore - 43, Tamil Nadu.

Abstract

The green resources which are utilized for the synthesis of nano particles are eco-friendly and helps to evade the practice of elevated use of harmful chemicals. Bio synthesis of silver nanoparticles (AgNPs) using Catharanthus roseus leaves was carried out with their characterization including UV spectroscopy, FTIR and SEM analysis. Qualitative phytochemical analysis was done to observe the presence of phyto compounds. The antioxidant assay was done to assess DPPH and Reducing power activities. The in vitro antidiabetic assay (α-Amylase Inhibition Assay) and the in-silico molecular docking were performed to analyze the antidiabetic potential of Catharanthus leaves. Target proteins such as 11ß-hydroxysteroid dehydrogenase type I (11ß-HSD1; PDB ID: 1XU7), Glucagon like peptide-1 (GLP-1; PDB ID: 3IOL), Protein-tyrosine phosphatase 1B (PTP1B; PDB ID: 4Y14) were chosen for molecular docking against the ligands screened from GCMS data. The colour change, UV-vis spectrum, FTIR and SEM examination supported the characterization of AgNPs. The synthesized nano particles showed a strong in vitro antioxidant activity with good scavenging percentage of 90.88% compared to the standard which was 99.84% in DPPH assay. Similarly, the inhibition of α-Amylase activity increased with increase in concentration of biosynthesized nano particles. The docking study revealed that plant compounds present have the highest binding affinity and good hydrogen bond interactions with active site residues. Hence the activities demonstrated suggest that they could be useful in the preparation of many therapeutic agents.

Publisher

A and V Publications

Subject

Pharmacology (medical),Pharmacology, Toxicology and Pharmaceutics (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of Nanoparticles of an Antifungal Drug Incorporated in Transdermal patch;Research Journal of Pharmacy and Technology;2023-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3