Machine-learning technology for predicting intraocular lens power: Diagnostic data generalization

Author:

Arzamastsev Alexander А.12ORCID,Fabrikantov Oleg L.2ORCID,Zenkova Natalia А.3ORCID,Belikov Sergey V.2ORCID

Affiliation:

1. Voronezh State University

2. The S. Fyodorov Eye Microsurgery Federal State Institution

3. Derzhavin Tambov State University

Abstract

BACKGROUND: The implantation of recent intraocular lens (IOLs) allows ophthalmologists to effectively solve the surgical rehabilitation problems of patients with cataracts. The degree of improvement in the patient’s visual function is directly dependent on the accuracy of the preoperative calculation of the optical IOL power. The most famous formulas used to calculate this indicator include SRK II, SRK/T, Hoffer-Q, Holladay II, Haigis, and Barrett. All these work well for an “average patient”; however, they are not adequate at the boundaries of input variable ranges. AIM: To examine the possibility of using mathematical models obtained by deep learning of artificial neural network (ANN) models to generalize data and predict the optical power of modern IOLs. MATERIALS AND METHODS: ANN models were trained on large-scale samples, including depersonalized data for patients in the ophthalmology clinic. Data provided in 2021 by ophthalmologist K.K. Syrykh reflect the results of both preoperative and postoperative observations of patients. The source file used to build the ANN model included 455 records (26 columns of input factors and one column for the output factor) for calculating IOL (diopters). To conveniently build ANN models, a simulator program previously developed by the authors was used. RESULTS: The resulting models, in contrast to the traditionally used formulas, reflect the regional specificity of patients to a much greater extent. They also make it possible to retrain and optimize the structure based on newly received data, which allows us to consider the nonstationarity of objects. A distinctive feature of such ANN models in comparison with the well-known formulas SRK II, SRK/T, Hoffer-Q, Holladay II, Haigis, and Barrett, which are widely used in surgical cataract treatment, is their ability to consider a significant number of recorded input quantities, which reduces the mean relative error in calculating the optical IOL power from 10%–12% to 3.5%. CONCLUSION: This study reveals the fundamental possibility of generalizing a significant amount of empirical data on calculating the optical IOL power using training ANN models that have a significantly larger number of input variables than those obtained using traditional formulas and methods. The results obtained allow the construction of an intelligent expert system with a continuous flow of new data from a source and a step-by-step retraining of ANN models.

Publisher

ECO-Vector LLC

Reference19 articles.

1. Fyodorov SN, Kolinko AI. Method of calculating the optical power of an intraocular lens. The Russian Annals of Ophthalmology. 1967;(4):27–31. (In Russ).

2. Balashevich LI, Danilenko EV. Results in application of the fyodorov’s iol power formula for posterior chamber lenses calculation. Fyodorov Journal of Ophthalmic Surgery. 2011;(1):34–38. EDN: PXRASV

3. Improvement of intraocular lens power calculation using empirical data

4. Comparison of the SRK II™ formula and other second generation formulas

5. Development of the SRK/T intraocular lens implant power calculation formula

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3