Dysregulation of Long Intergenic Non-Coding RNA Expression in the Schizophrenia Brain

Author:

Nguyen TuanORCID,Efimova Olga I.ORCID,Tokarchuk Artem V.ORCID,Morozova Anna Yu.ORCID,Zorkina Yana A.ORCID,Andreyuk Denis S.ORCID,Kostyuk George P.ORCID,Khaitovich Philipp E.ORCID

Abstract

BACKGROUND: Transcriptomic studies of the brains of schizophrenia (SZ) patients have produced abundant but largely inconsistent findings about the disorders pathophysiology. These inconsistencies might stem not only from the heterogeneous nature of the disorder, but also from the unbalanced focus on particular cortical regions and protein-coding genes. Compared to protein-coding transcripts, long intergenic non-coding RNA (lincRNA) display substantially greater brain region and disease response specificity, positioning them as prospective indicators of SZ-associated alterations. Further, a growing understanding of the systemic character of the disorder calls for a more systematic screening involving multiple diverse brain regions. AIM: We aimed to identify and interpret alterations of the lincRNA expression profiles in SZ by examining the transcriptomes of 35 brain regions. METHODS: We measured the transcriptome of 35 brain regions dissected from eight adult brain specimens, four SZ patients, and four healthy controls, using high-throughput RNA sequencing. Analysis of these data yielded 861 annotated human lincRNAs passing the detection threshold. RESULTS: Of the 861 detected lincRNA, 135 showed significant region-dependent expression alterations in SZ (two-way ANOVA, BH-adjusted p 0.05) and 37 additionally showed significant differential expression between HC and SZ individuals in at least one region (post hoc Tukey test, p 0.05). For these 37 differentially expressed lincRNAs (DELs), 88% of the differences occurred in a cluster of brain regions containing axon-rich brain regions and cerebellum. Functional annotation of the DEL targets further revealed stark enrichment in neurons and synaptic transmission terms and pathways. CONCLUSION: Our study highlights the utility of a systematic brain transcriptome analysis relying on the expression profiles measured across multiple brain regions and singles out white matter regions as a prospective target for further SZ research.

Publisher

ECO-Vector LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3