Association of polymorphic variants of the gene BDNF in human adaptation to extreme environmental conditions and life expectancy

Author:

Spivak Irina M.ORCID,Zhekalov Andrey N.ORCID,Spivak Dmitry L.ORCID,Shapovalov Pavel A.ORCID,Timoshenko Ruslan V.,Glushakov Ruslan I.ORCID,Golovko Konstantin P.ORCID

Abstract

BDNF is a member of the neurotrophin protein family, which plays an important role in the development, maintenance and plasticity of the central and peripheral nervous system. BDNF is expressed in neurons of the developing and adult mammalian nervous system, where it is produced in relatively small amounts, but has high activity, causing biological reactions at picomolar concentrations. It promotes the differentiation of neurons from stem cells, enhances neurite growth and synaptogenesis, and can prevent programmed cell death (apoptosis). The role of BDNF in the regulation of energy homeostasis is also great: by stimulating glucose transport and mitochondrial biogenesis, BDNF enhances cell bioenergetics and protects neurons from damage and neurodegenerative diseases. It is BDNF that controls nutrition patterns (regulating appetite) and types of physical activity, modulates glucose metabolism in peripheral tissues and mediates the positive effect of exercise and fasting on cognitive functions, mood, cardiovascular function and peripheral metabolism. This article presents a mini-review of the data accumulated to date on the role of polymorphic variants of the BDNF gene in the processes of active physiological and psychological adaptation and their comparison with the data obtained by the authors in the study of psychological adaptation to working conditions in the Arctic region of the Russian Federation. The given materials allow us to conclude that optimal adaptation to extreme external conditions is most likely provided genetically by the presence of the Val/Val genotype of the BDNF gene (also associated, in turn, with the probable extension of the individual survival period), and psychologically by the increased use of creative ability.

Publisher

ECO-Vector LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3