Peculiarities of Frequency-Following Response in Healthy Individuals when Listening to Complex Sounds

Author:

Oknina Lyubov' B.1ORCID,Slezkin Andrey A.12ORCID,Vologdina Yana O.13ORCID,Kantserova Anna O.1ORCID,Strel'nikova Ekaterina V.1ORCID,Pitskhelauri David I.3ORCID

Affiliation:

1. Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Science

2. Russian Technological University

3. Burdenko National Medical Research Center of Neurosurgery

Abstract

INTRODUCTION: Studies of recent years showed that functional disorders in the brainstem may be one of factors causing inability to perceive speech by normal-hearing individuals. Frequency-following response (FFR) is an auditory evoked potential emerging in different regions of the brain in response to a sound or a change in the sound frequency. The initiation of this potential is associated with the correct processing of auditory information in the subcortical structures of the brain. However, until the moment, there is no regulatory framework that could permit use of this potential in routine examinations. AIM: To identify and analyze the peculiarities of FFR in healthy adult individuals when listening to a complex sound. MATERIALS AND METHODS: The study included 29 healthy subjects aged from 18 to 48 years (mean age 28 ± 10 years). Electrical activity of the brain was recorded from 32 electrodes. Sampling frequency 2000 Hz, transmission frequency 0.1 Hz–500 Hz. The stimulus was a 30-s sound that included simple sounds of five different frequencies (600 Hz, 800 Hz, 1000 Hz, 2000 Hz, 4000 Hz) changing in a random order every 100 ms. FFR was isolated in each frequency change in the complex sound. The resulting FFR included two peaks, for each amplitude, latency, and dipole sources were calculated. RESULTS: FFR was obtained in all the subjects and included two peaks. In some subjects, FFR peaks had a statistically higher amplitude and lower latency. In subjects with a higher amplitude FFR peaks, three dipoles were identified for the first peak: in the brainstem and in the cortex of the right hemisphere (Brodmann areas 6 and 39). For the second peak, one dipole was identified in the cortex (Brodmann area 19). In subjects with low amplitude FFR peaks, for the first peak one source in the brainstem was identified. For the second peak, two dipoles were identified: in the posterior cingulate cortex (Brodmann area 23) and in the medial thalamus. CONCLUSION: The data obtained suggest that the method of recording and analyzing FFR can be used to assess the functional integrity and correct participation of the midbrain in the perception of auditory stimuli. The peculiarities of amplitude-time parameters of its peaks probably reflect the individual ability to finely differentiate stimuli.

Publisher

ECO-Vector LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3