Application of deep neural networks to improve diagnostic accuracy of rheumatoid arthritis using diffuse optical tomography

Author:

Feng Yangqin,Lighter D.,Zhang Lei,Wang Yan,Dehghani H.

Abstract

Abstract A set of deep neural network models for rheumatoid arthritis (RA) classification using a highway network, a convolutional neural network and a residual network is proposed based on the data of diffuse optical tomography (DOT) utilising near-infrared light, which ensures early diagnosis of pathophysiological changes resulting from inflammation. A numerical model of the finger is used to generate images to overcome the inherent problem of insufficient clinical DOT images available. The proposed deep neural network models are applied to automatically classify simulated DOT images of inflamed and non-inflamed joints and transfer learning is also used to improve the performance of the classification. The results demonstrate that all three deep neural network methods improve the diagnostic accuracy as compared to the widely applied support vector machine (SVM), especially for high inter-subject variability databases. In cases of distinct modelled severity of disease, residual network achieved the highest accuracy (> 99 %), and both of highway and convolutional neural networks reached 99 %, respectively. However, as the severity of the modelled disease is reduced, this accuracy is reduced to 75.2 % for residual networks. The results indicate that transfer learning can improve the performance of deep neural network methods on RA classification from DOT data and highlight their potential as a computer aided tool in DOT diagnostic systems.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3