Hydrogen energy: development prospects and materials

Author:

Filippov Sergey P.ORCID,Yaroslavtsev Andrey B.ORCID

Abstract

The review addresses the prospects of global hydrogen energy development. Particular attention is given to the design of materials for sustainable hydrogen energy applications, including hydrogen production, purification, storage, and conversion to energy. The review highlights the key role of oxide-supported metal or alloy nanoparticles as catalysts in the hydrogen production via the conversion of natural gas or alcohols. An alternative approach is the pyrolysis of hydrocarbons giving hydrogen and carbon. The direct production of high-purity hydrogen can be performed using electrolysis or membrane catalysis. Apart from conventional hydrogen storage methods such as the compression and liquefaction, the hydrogen alloy absorption and chemical conversion to liquid carriers (ammonia and toluene cycles) are considered. Fuel cells, containing catalysts and proton-conducting membranes as the key components, are used for hydrogen energy generation. Binary platinum alloys or core – shell structures supported on carbon or oxides can be employed to facilitate the oxygen electroreduction and CO electrooxidation in low-temperature fuel cells. High conductivity and selectivity are provided by perfluorinated sulfonic acid membranes. The high cost of the latter materials dictates the development of alternative membrane materials. A crucial issue in high-temperature fuel cells is the necessity of reducing the operating temperature and ohmic losses. This problem can be solved by designing thin-film materials and replacing oxygen-conducting ceramic membranes by proton-conducting membranes. The bibliography includes 290 references.

Publisher

IOP Publishing

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3