Author:
Islam Habibul,Prakash Om,Verma Ram Krishna
Abstract
<p style='text-indent:20px;'>For any odd prime <inline-formula><tex-math id="M2">\begin{document}$ p $\end{document}</tex-math></inline-formula>, we study constacyclic codes of length <inline-formula><tex-math id="M3">\begin{document}$ n $\end{document}</tex-math></inline-formula> over the finite commutative non-chain ring <inline-formula><tex-math id="M4">\begin{document}$ R_{k,m} = \mathbb{F}_{p^m}[u_1,u_2,\dots,u_k]/\langle u^2_i-1,u_iu_j-u_ju_i\rangle_{i\neq j = 1,2,\dots,k} $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M5">\begin{document}$ m,k\geq 1 $\end{document}</tex-math></inline-formula> are integers. We determine the necessary and sufficient condition for these codes to contain their Euclidean duals. As an application, from the dual containing constacyclic codes, several MDS, new and better quantum codes compare to the best known codes in the literature are obtained.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献