Quantumness of correlations in nanomaterials—experimental evidence and unconventional effects

Author:

Aris Chatzidimitriou-Dreismann C.

Abstract

<abstract><p>Quantum correlations phenomena, such as entanglement, quantum discord and quantum coherence, are ubiquitous effects caused by interactions between physical systems—such as electrons and ions in a piece of metal, or H atoms/molecules adsorbed in nanoporous materials. Here, we address time-asymmetric quantumness of correlations (QoC), with particular emphasis on their energetic consequences for dynamics and non-equilibrium thermodynamics in condensed matter and/or many-body systems. Some known theoretical models—for example, the quantum Zeno effect and GKSL-type Markovian equations-of-motion, all of them being time-asymmetric—are shortly considered, with emphasis on the general character of one of their common and most intriguing result. Namely, that in clear contradistinction to conventional expectations, degradation (or destruction, decoherence, consumption, smearing out, coarse-graining) of quantum correlations can be a source of work (instead of heat production). The experimental relevance of the theoretical considerations is shown with the aid of a recent scattering experiment exploring the impulsively driven (by neutron collisions) translational dynamics of H$ _2 $ molecules in carbon nanotubes and other nanostructured materials—a topic of immediate relevance for material sciences and related technologies.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3