Effect of Yttrium on corrosion resistance of Zr-based alloys in Ringer's lactate solution for biomaterial applications

Author:

Awwaluddin Muhammad12,Hastuty Sri3,Prajitno Djoko Hadi4,Makmuri 1,Prasetiyo Budi1,Irawadi Yudi1,Hendrawan Jekki5,Purnama Harry5,Nugroho Eko Agus5

Affiliation:

1. Research Center for Structural Strength Technology, National Research and Innovation Agency, Tangerang Selatan 15310, Indonesia

2. Department of Mechanical Engineering, Faculty of Engineering, Universitas Pamulang 15314, Indonesia

3. Department of Mechanical Engineering, Faculty of Industrial Technology, Universitas Pertamina, Jakarta 12220, Indonesia

4. Research Center for Radiation Process Technology, National Research and Innovation Agency, Bandung 40111, Indonesia

5. Research Organization of Energy and Manufacturing, National Research and Innovation Agency, Indonesia

Abstract

<abstract> <p>In this study, several types of zirconium-based alloys supplemented with 2, 3, and 4, in wt.% of yttrium for corrosion resistance enhancement were investigated. The specimens were prepared by a single arc welding furnace in an argon-controlled atmosphere. By optical and scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and electrochemical tests, the effect of different portions of yttrium on the surface morphology, phase structure, and corrosion resistance in the Zr alloys were analyzed. As of result of arc welding, the specimens were obtained and examined by optical microscope and then homogenous structures were observed. These structures are matrix (Zr-rich) and oxides. Furthermore, as of the characterization results by X-ray diffraction, the main compound of the alloys was Zr6Mo6AlTi, while others were AlZr<sub>3</sub>, MoO<sub>2,</sub> ZrO<sub>2</sub>, and Y<sub>2</sub>O<sub>3</sub> oxides. Yttrium addition in the alloys prior to the corrosion test led to thickened grain boundaries but reduced grain size. The Y<sub>2</sub>O<sub>3</sub> itself remained at the grain boundaries as clusters. The corrosion test was performed in Ringer's lactate solution by using anodic polarization. The effect of yttrium addition into Zr-based alloys was found to be beneficial by shifting the corrosion potential toward a positive value. Zr-6Mo-6Al-Ti-4Y had a higher open corrosion potential value than the other two alloys. The difference was approximately 200 mV. However, the passive region of Zr-6Mo-6Al-Ti-4Y was the shortest and broke down at an earlier stage. The formation of these kinds of oxides was the reason for the increase in corrosion potential of Zr-based alloys with 4% Y added.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference38 articles.

1. Saini M, Singh Y, Arora P, et al. (2015) Implant biomaterials: A comprehensive review. World J Clin Cases 3: 52–57. https://doi.org/10.12998/wjcc.v3.i1.52

2. Guarino V, Iafisco M, Spriano S (2020) Introducing biomaterials for tissue repair and regeneration, In: Guarino V, Iafisco M, Spriano S, Nanostructured Biomaterials for Regenerative Medicine, Woodhead Publishing, 1–27. https://doi.org/10.1016/B978-0-08-102594-9.00001-2

3. Niinomi M, Hanawa T, Okazaki Y, et al. (2010) Contributor contact details, In: Niinomi M, Metals for Biomedical Devices, London: Woodhead Publishing, xi-xiii. https://doi.org/10.1016/B978-1-84569-434-0.50019-X

4. Tanzi MC, Farè S, Candiani G (2019) Chapter 4-Biomaterials and applications, In: Tanzi MC, Farè S, Candiani G, Foundations of Biomaterials Engineering, New York: Academic Press, 199–287. https://doi.org/10.1016/B978-0-08-101034-1.00004-9

5. Hua N, Chen W, Zhang L, et al. (2017) Mechanical properties and bio-tribological behaviors of novel beta-Zr-type Zr-Al-Fe-Nb alloys for biomedical applications. Mater Sci Eng C 76: 1154–1165. https://doi.org/10.1016/j.msec.2017.02.146

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3