Research on dependent evidence combination based on principal component analysis

Author:

Su Xiaoyan1,Shang Shuwen1,Xiong Leihui2,Hong Ziying1,Zhong Jian1

Affiliation:

1. School of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China

2. State Grid Nanchang Electric Power Supply Company, Nanchang 330069, China

Abstract

<abstract><p>Dempster-Shafer evidence theory, as a generalization of probability theory, is a powerful tool for dealing with a variety of uncertainties, such as incompleteness, ambiguity, and conflict. Because of its advantages in information fusion compared with traditional probability theory, it is widely used in various fields. However, the classic Dempster's combination rule assumes that evidences are independent of each other, which is difficult to satisfy in real life. Ignoring the dependence among the evidences will lead to unreasonable fusion results, and even wrong conclusions. Considering the limitations of D-S evidence theory, this paper proposed a new evidence fusion model based on principal component analysis (PCA) to deal with the dependence among evidences. First, the approximate independent principal components of each information source were obtained based on principal component analysis. Second, the principal component data set was used as a new information source for evidence theory. Third, the basic belief assignments (BBAs) were constructed. As the fundamental construct of evidence theory, a BBA is a probabilistic function corresponding to each hypothesis, quantifying the belief assigned based on the evidence at hand. This function facilitates the synthesis of disparate evidence sources into a mathematically coherent and unified belief structure. After constructing the BBAs, the BBAs were fused and a conclusion was drawn. The case study verified that the proposed method is more robust than several traditional methods and can deal with redundant information effectively to obtain more stable results.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3