Decentralized observer-based event-triggered control for an interconnected fractional-order system with stochastic Cyber-attacks

Author:

Chen Zhaohui1,Tan Jie1,He Yong1,Cao Zhong2

Affiliation:

1. School of Mathematics, Physics and Data Science, Chongqing University of Science and Technology, Chongqing 401331, China

2. School of electronics and communication Engineering, Guangzhou University, Guangzhou 510006, China

Abstract

<abstract> <p>The problem of decentralized observer-based event-triggered stabilization for an interconnected fractional-order system subject to stochastic cyber-attacks is studied. To address this issue, the decentralized event-triggered mechanism is proposed for the interconnected fractional-order system, where the event-triggered schemes are designed based on the states of fractional-order observers, and the stochastic attacks are considered both on control inputs and observer outputs. By combining decentralized observers and decentralized event-triggered controllers, we aim to achieve decentralized control with reduced amplifying error and use local signals to improve overall system performance. By utilizing the diffusive representation of the fractional-order system, the interconnected fractional-order system is transformed into an equivalent integer-order one to simplify the analysis and control design. Employing the Lyapunov indirect approach, a sufficient condition is obtained to guarantee the stochastic asymptotically stability of the augmented system. Additionally, by the singular value decomposition technique, the approach of simultaneously computing the decentralized observer gains and controller gains is presented. Finally, a simulation example is provided to validate the theoretical findings.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3