Improving modularity score of community detection using memetic algorithms
-
Published:2024
Issue:8
Volume:9
Page:20516-20538
-
ISSN:2473-6988
-
Container-title:AIMS Mathematics
-
language:
-
Short-container-title:MATH
Author:
Lee Dongwon1, Kim Jingeun2, Yoon Yourim1
Affiliation:
1. Department of Computer Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, Republic of Korea 2. Department of IT Convergence Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
Abstract
<abstract>
<p>With the growth of online networks, understanding the intricate structure of communities has become vital. Traditional community detection algorithms, while effective to an extent, often fall short in complex systems. This study introduced a meta-heuristic approach for community detection that leveraged a memetic algorithm, combining genetic algorithms (GA) with the stochastic hill climbing (SHC) algorithm as a local optimization method to enhance modularity scores, which was a measure of the strength of community structure within a network. We conducted comprehensive experiments on five social network datasets (Zachary's Karate Club, Dolphin Social Network, Books About U.S. Politics, American College Football, and the Jazz Club Dataset). Also, we executed an ablation study based on modularity and convergence speed to determine the efficiency of local search. Our method outperformed other GA-based community detection methods, delivering higher maximum and average modularity scores, indicative of a superior detection of community structures. The effectiveness of local search was notable in its ability to accelerate convergence toward the global optimum. Our results not only demonstrated the algorithm's robustness across different network complexities but also underscored the significance of local search in achieving consistent and reliable modularity scores in community detection.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference71 articles.
1. P. Bedi, C. Sharma, Community detection in social networks, Wiley interdisciplinary reviews: Data mining and knowledge discovery, 6 (2016), 115–135. https://doi.org/10.1002/widm.1178 2. L. M. Naeni, R. Berretta, P. Moscato, MA-Net: A reliable memetic algorithm for community detection by modularity optimization, In Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems, 1 (2015), Springer. https://doi.org/10.1007/978-3-319-13359-1_25 3. R. K. Behera, D. Naik, S. K. Rath, R. Dharavath, Genetic algorithm-based community detection in large-scale social networks, Neural Comput. Appl., 32 (2020), 9649–9665. https://doi.org/10.1007/s00521-019-04487-0 4. E. Ferrara, A large-scale community structure analysis in Facebook, EPJ Data Sci., 1 (2012), 1–30. https://doi.org/10.1140/epjds9 5. J. Goldenberg, B. Libai, E. Muller, Using complex systems analysis to advance marketing theory development: Modeling heterogeneity effects on new product growth through stochastic cellular automata, Acad. Mark. Sci. Rev., 9 (2001), 1–18.
|
|