Mesoscopic glass transition model: Influence of the cooling rate on the structure refinement

Author:

Ankudinov Vladimir,Shklyaev Konstantin,Vasin Mikhail

Abstract

<p>The process of glass transition during the quenching in the domain with the cold wall has been numerically simulated. We have implemented the temperature-dependent form of the previously proposed theoretical model, which combined the heat transfer in the domain and the gauge theory of glass transition, assuming the presence of topologically stable distortions (disclinations) in the forming solid. The competition between crystallization (formation of polycrystalline structure) and the formation of the amorphous disordered phase has been shown. At the relatively slow cooling rates corresponding to the formation of the crystalline phase, we observed a columnar to equiaxed transition qualitatively similar to the observed in many metallic alloys. The moving front followed the equilibrium isotherm corresponding to the equilibrium temperature of transition in the disclinations subsystem, although front drag resulted in the effect of kinetic undercooling and the emergence of the maximum velocity of the crystallization front. High thermal conductivity values associated with the substantial heat flux lead to the bulk amorphous state. The dynamics of the coarsening of the primary amorphous structure depended on the annealing temperature.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3