Finite-time stochastic synchronization of fuzzy bi-directional associative memory neural networks with Markovian switching and mixed time delays via intermittent quantized control

Author:

Wang Chengqiang1,Zhao Xiangqing1,Wang Yang2

Affiliation:

1. School of Mathematics, Suqian University, Suqian 223800, China

2. Public Class Teaching Department, Sichuan Vocational and Technical College of Communications, Chengdu 611130, China

Abstract

<abstract><p>We are concerned in this paper with the finite-time synchronization problem for fuzzy bi-directional associative memory neural networks with Markovian switching, discrete-time delay in leakage terms, continuous-time and infinitely distributed delays in transmission terms. After detailed analysis, we come up with an intermittent quantized control for the concerned bi-directional associative memory neural network. By designing an elaborate Lyapunov-Krasovskii functional, we prove under certain additional conditions that the controlled network is stochastically synchronizable in finite time: The $ 1 $st moment of every trajectory of the error network system associated to the concerned controlled network tends to zero as time approaches a finite instant (the settling time) which is given explicitly, and remains to be zero constantly thereupon. In the meantime, we present a numerical example to illustrate that the synchronization control designed in this paper is indeed effective. Since the concerned fuzzy network includes Markovian jumping and several types of delays simultaneously, and it can be synchronized in finite time by our suggested control, as well as the suggested intermittent control is quantized which could reduce significantly the control cost, the theoretical results in this paper are rich in mathematical implication and have wide potential applicability in the real world.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3