Well-posedness of a nonlinear stochastic model for a chemical reaction in porous media and applications

Author:

Eddahbi Mhamed1,Mohammed Mogtaba2,El-Otmany Hammou3

Affiliation:

1. Department of Mathematics, College of Sciences, King Saud University, P.O. Box 2455, Z.C. 11451, Riyadh, Saudi Arabia

2. Department of Mathematics, College of Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia

3. Toulouse School of Economics, University of Toulouse Capitole 1, Esplanade de l'Université, 31080 Toulouse Cedex 6, France

Abstract

<p>In this paper, we considered a stochastic model of chemical reactive flows acting through porous media under the influence of nonlinear external random fluctuations, where the interchanges of chemical flow across the skeleton's surface are represented by a nonlinear function. We studied the existence and uniqueness of strong probabilistic solutions for the model under consideration. We also show the positivity for the concentration of the solute in the fluid face as well as the concentration of reactants on the surface of the skeleton under extra reasonable assumptions on the data. Initially, we approximated the solution of the nonlinear stochastic diffusion equation using Galerkin's approximation, and obtained important bound estimates along with probabilistic compactness results. Thereafter, we passed the limit and obtained a weak probabilistic solution. This was followed by the path-wise uniqueness of the solution, which leads to the existence and uniqueness of strong probabilistic solutions as a result of Yamada-Watanabe's theorem. Finally, we discuss some important numerical applications such as Langmuir and Freundlich kinetics using the extended stochastic non-conforming finite element method to illustrate the efficiency of this approach and compare it to the deterministic approach in both cases. Let us mention that well-posedness, positivity, and numerical simulations have not been considered so far for such a nonlinear stochastic model.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3