Author:
Bruno Roberto,Vaccaro Ugo
Abstract
<abstract><p>In this paper, we introduced novel characterizations of the classical concept of majorization in terms of upper triangular (resp., lower triangular) row-stochastic matrices, and in terms of sequences of linear transforms on vectors. We use our new characterizations of majorization to derive an improved entropy inequality.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference21 articles.
1. B. C. Arnold, J. M. Sarabia, Majorization and the Lorenz Order with Applications in Applied Mathematics and Economics, Berlin: Springer, 2018.
2. A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: Theory of Majorization and its Applications, $2^{nd}$ edition, Berlin: Springer, 2010.
3. G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge: Cambridge University Press, 1934.
4. M. Madiman, L. Wang, J. O. Woo, Majorization and Rényi entropy inequalities via Sperner theory, Discrete Math., 342 (2019), 2911–2923. https://doi.org/10.1016/j.disc.2019.03.002
5. M. Adil Khan, S. I. Bradanovic, N. Latif, D. Pecaric, J. Pecaric, Majorization Inequality and Information Theory, Zagreb: Element, 2019.