The influence of an appropriate reporting time and publicity intensity on the spread of infectious diseases

Author:

Hou Chang,Wang Qiubao

Abstract

<abstract><p>We present a stochastic time-delay susceptible-exposed-asymptomatic-symptom-vaccinated-recovered (SEAQVR) model with media publicity effect in this study. The model takes into account the impacts of noise, time delay and public sensitivity on infectious illness propagation. The stochastic dynamics of the system are analyzed at the Hopf bifurcation, using time delay and noise intensity as bifurcation parameters, and the theoretical conclusions are validated using numerical simulation. Increasing the time delay and sensitivity coefficient can effectively delay the occurrence of the peak number of infected individuals and mitigate the extent of infection. Additionally, time delay and noise intensity are shown to have specific thresholds, beyond which periodic infections occur. Notably, heightened public sensitivity reduces the threshold for time delay, and media publicity directly affects public sensitivity. The numerical simulation reveals that increasing media publicity intensity does not always yield better results, and that the sensitivity of the public at present is an important reference index for setting an appropriate publicity intensity.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3