Machine learning approach of Casson hybrid nanofluid flow over a heated stretching surface

Author:

Ramasekhar Gunisetty1,Alkarni Shalan2,Shah Nehad Ali3

Affiliation:

1. Department of Mathematics, Rajeev Gandhi Memorial College of Engineering and Technology (Autonomous), Nandyal 518501, Andhra Pradesh, India

2. Department of Mathematics, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

3. Department of Mechanical Engineering, Sejong University, Seoul 05006, South Korea

Abstract

<abstract> <p>The present investigation focused on the influence of magnetohydrodynamic Gold-Fe<sub>3</sub>O<sub>4</sub> hybrid nanofluid flow over a stretching surface in the presence of a porous medium and linear thermal radiation. This article demonstrates a novel method for implementing an intelligent computational solution by using a multilayer perception (MLP) feed-forward back-propagation artificial neural network (ANN) controlled by the Levenberg-Marquard algorithm. We trained, tested, and validated the ANN model using the obtained data. In this model, we used blood as the base fluid along with Gold-Fe<sub>3</sub>O<sub>4</sub> nanoparticles. By using the suitable self-similarity variables, the partial differential equations (PDEs) are transformed into ordinary differential equations (ODEs). After that, the dimensionless equations were solved by using the MATLAB solver in the Fehlberg method, such as those involving velocity, energy, skin friction coefficient, heat transfer rates and other variables. The goals of the ANN model included data selection, network construction, network training, and performance assessment using the mean square error indicator. The influence of key factors on fluid transport properties is presented via tables and graphs. The velocity profile decreased for higher values of the magnetic field parameter and we noticed an increasing tendency in the temperature profile. This type of theoretical investigation is a necessary aspect of the biomedical field and many engineering sectors.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference36 articles.

1. M. Sheikholeslami, Application of control volume based finite element method (CVFEM) for nanofluid flow and heat transfer, Elsevier, 2019. https://doi.org/10.1016/C2017-0-01264-8

2. S. K. Das, S. U. S. Choi, H. E. Patel, Heat transfer in nanofluids—A review, Heat Transfer Eng., 27 (2006), 3–19. https://doi.org/10.1080/01457630600904593

3. G. Ramasekhar, P. B. A. Reddy, Entropy generation on Darcy–Forchheimer flow of Copper-Aluminium oxide/Water hybrid nanofluid over a rotating disk: Semi-analytical and numerical approaches, Sci. Iran., 30 (2023), 2245–2259. https://doi.org/10.24200/sci.2023.60134.6617

4. S. R. R. Reddy, G. Ramasekhar, S. Suneetha, S. Jakeer, Entropy generation analysis on MHD Ag+Cu/blood tangent hyperbolic hybrid nanofluid flow over a porous plate, J. Comput. Biophys. Chem., 22 (2023), 881–895. https://doi.org/10.1142/S2737416523500473

5. B. A. Bhanvase, D. P. Barai, S. H. Sonawane, N. Kumar, S. S. Sonawane, Intensified heat transfer rate with the use of nanofluids, In: Handbook of nanomaterials for industrial applications, Elsevier, 2018,739–750. https://doi.org/10.1016/B978-0-12-813351-4.00042-0

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3