NeuroWave-Net: Enhancing epileptic seizure detection from EEG brain signals via advanced convolutional and long short-term memory networks

Author:

Hassan Md. Mehedi1,Haque Rezuana2,Islam Sheikh Mohammed Shariful3,Meshref Hossam4,Alroobaea Roobaea4,Masud Mehedi4,Bairagi Anupam Kumar1

Affiliation:

1. Computer Science and Engineering Discipline, Khulna University, Khulna 9208, Bangladesh

2. Computer Science and Engineering, Chittagong University of Engineering and Technology, Chittagong, Bangladesh

3. Institute for Physical Activity and Nutrition, Deakin University, Melbourne, VIC 3125, Australia

4. Department of Computer Science, College of Computers and Information Technology, Taif University, Taif, 21944, Saudi Arabia

Abstract

<abstract> <p>This study presented a new approach to seizure classification utilizing electroencephalogram (EEG) data. We introduced the NeuroWave-Net, an innovative hybrid model that seamlessly integrates convolutional neural networks (CNN) and long short-term memory (LSTM) architectures. Unlike conventional methods, our model capitalized on CNN's proficiency in feature extraction and LSTM's prowess in classifying seizure. The key strength of the NeuroWave-Net lies in its ability to combine these distinct architectures, synergizing their capabilities for enhanced accuracy in identifying seizure conditions within EEG data. Our proposed model exhibited outstanding performance, achieving a classification accuracy of 99.48%. This study contributed to the advancement of seizure classification models, providing a robust and streamlined approach for accurate categorization within EEG datasets. NeuroWave-Net stands as a testament to the potential of hybrid neural network architectures in neurological diagnostics.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3