A discrete stochastic model of the COVID-19 outbreak: Forecast and control

Author:

He Sha, ,Tang Sanyi,Rong Libin,

Abstract

<abstract> <p>The novel Coronavirus (COVID-19) is spreading and has caused a large-scale infection in China since December 2019. This has led to a significant impact on the lives and economy in China and other countries. Here we develop a discrete-time stochastic epidemic model with binomial distributions to study the transmission of the disease. Model parameters are estimated on the basis of fitting to newly reported data from January 11 to February 13, 2020 in China. The estimates of the contact rate and the effective reproductive number support the efficiency of the control measures that have been implemented so far. Simulations show the newly confirmed cases will continue to decline and the total confirmed cases will reach the peak around the end of February of 2020 under the current control measures. The impact of the timing of returning to work is also evaluated on the disease transmission given different strength of protection and control measures.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modelling and Simulation,General Medicine

Reference31 articles.

1. World Health Organization (WHO). Coronavirus. Available from: https://www.who.int/health-topics/coronavirus (accessed on January 23, 2020).

2. Wuhan Municipal Health Commission. Available from: http://wjw.wuhan.gov.cn/front/web/showDetail/2019123108989 (accessed on December 31, 2019).

3. World Health Organization (WHO). Disease Outbreak News. Available from: https://www.who.int/csr/don/archive/disease/novelcoronavirus/en/ (accessed on January 14, 2020).

4. World Health Organization (WHO). Situation reports. Available from: http://who.maps.arcgis.com/apps/opsdashboard/index.html#/c88e37cfc43b4ed3baf977d77e4a0667 (accessed on January 23, 2020).

5. National Health Commission of the People's Republic of China. Available from: http://www.nhc.gov.cn/xcs/xxgzbd/gzbdindex.shtml (accessed on February 14, 2020).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3