A polygonal topology optimization method based on the alternating active-phase algorithm

Author:

Cui Mingtao12,Cui Wennan3,Li Wang1,Wang Xiaobo1

Affiliation:

1. Research Center for Applied Mechanics, School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China

2. Department of Mechanical Engineering, McGill University, Montreal H3A 2K6, QC, Canada

3. School of Electronic Engineering, Xi'an Shiyou University, Xi'an 710300, China

Abstract

<abstract> <p>We propose a polygonal topology optimization method combined with the alternating active-phase algorithm to address the multi-material problems. During the process of topology optimization, the polygonal elements generated by signed distance functions are utilized to discretize the structural design domain. The volume fraction of each material is considered as a design variable and mapped to its corresponding element variable through a filtering matrix. This method is used to solve a multi-material structural topology optimization problem of minimizing compliance, in which a descriptive model is established by using the alternating active-phase algorithm and the solid isotropic microstructure with penalty theory. This method can accomplish the topology optimization of multi-material structures with complex curve boundaries, eliminate the phenomena of checkerboard patterns and a one-node connection, and avoid sensitivity filtering. In addition, this method possesses fine numerical stability and high calculation accuracy compared to the topology optimization methods that use quadrilateral elements or triangle elements. The effectiveness and feasibility of this method are demonstrated through several commonly used and representative numerical examples.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3