An improved stacking-based model for wave height prediction

Author:

Lu Peng1,Chen Yuze1,Chen Ming1,Wang Zhenhua12,Zheng Zongsheng1,Wang Teng3,Kong Ru3

Affiliation:

1. College of Information Technology, Shanghai Ocean University, Shanghai 201306, China

2. Fujian Provincial Key Laboratory of Coast and Island Management Technology Study, Fujian Institute of Oceanography, Xiamen 361013, China

3. Shandong Provincial Institute of Land Space Data and Remote Sensing Technology, Shandong Ocean Bureau, Jinan 250002, China

Abstract

<p>Wave height prediction is hampered by the volatility and unpredictability of ocean data. Traditional single predictors are inadequate in capturing this complexity, and weighted fusion methods fail to consider inter-model correlations, resulting in suboptimal performance. To overcome these challenges, we presented an improved stacking-based model that combined the long short-term memory (LSTM) network with extremely randomized trees (ET) for wave height prediction. Initially, features with weak correlation to wave height were excluded using the Pearson correlation coefficient. Subsequently, a stacking ensemble tailored for time series cross-validation was deployed, employing LSTM and ET as base learners to capture temporal and feature-specific patterns, respectively. Lasso regression was utilized as the meta-learner, harmonizing these insights to improve accuracy by leveraging the strengths of each model across different dimensions of the data. Validation using datasets from four buoy stations demonstrated the superior predictive capability of our proposed model over single predictors such as temporal convolutional networks (TCN) and XGBoost, and fusion methods like LSTM-ET-BP.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3