Effects of vaccination on mitigating COVID-19 outbreaks: a conceptual modeling approach

Author:

Fisher Allison1,Xu Hainan2,He Daihai3,Wang Xueying1

Affiliation:

1. Department of Mathematics and Statistics, Washington State University, Pullman, WA 99164, USA

2. Department of Mathematics and Statistics, McMaster University, Hamilton, ON L8S 4L8, Canada

3. Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China

Abstract

<abstract><p>This paper is devoted to investigating the impact of vaccination on mitigating COVID-19 outbreaks. In this work, we propose a compartmental epidemic ordinary differential equation model, which extends the previous so-called SEIRD model <sup>[<xref ref-type="bibr" rid="b1">1</xref>,<xref ref-type="bibr" rid="b2">2</xref>,<xref ref-type="bibr" rid="b3">3</xref>,<xref ref-type="bibr" rid="b4">4</xref>]</sup> by incorporating the birth and death of the population, disease-induced mortality and waning immunity, and adding a vaccinated compartment to account for vaccination. Firstly, we perform a mathematical analysis for this model in a special case where the disease transmission is homogeneous and vaccination program is periodic in time. In particular, we define the basic reproduction number $ \mathcal{R}_0 $ for this system and establish a threshold type of result on the global dynamics in terms of $ \mathcal{R}_0 $. Secondly, we fit our model into multiple COVID-19 waves in four locations including Hong Kong, Singapore, Japan, and South Korea and then forecast the trend of COVID-19 by the end of 2022. Finally, we study the effects of vaccination again the ongoing pandemic by numerically computing the basic reproduction number $ \mathcal{R}_0 $ under different vaccination programs. Our findings indicate that the fourth dose among the high-risk group is likely needed by the end of the year.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3