JQ1 inhibits high glucose-induced migration of retinal microglial cells by regulating the PI3K/AKT signaling pathway

Author:

Zhu Ying1,Guo Lipeng2,Zou Jixin1,Wang Liwen1,Dong He1,Yu Shengbo3,Zhang Lijun1,Li Jun4,Qu Xueling5

Affiliation:

1. Department of Ophthalmology, Eye Hospital of Dalian, Dalian Third People's Hospital Affiliated of Dalian Medical University, Dalian 116037, China

2. Department of Cardiovascular, Dalian Third People's Hospital Affiliated of Dalian Medical University, Dalian 116037, China

3. Department of Anatomy, Dalian Medical University, Dalian 116044, China

4. He Eye Specialists Hospital of ShenYang No. 128, Huanghebei Street, YuHong District, Shenyang 110034, China

5. Pelvic Floor Repair Center, the Affiliated Dalian Maternity Hospital of Dalian Medical University, 1 Dunhuang Road, Dalian, China

Abstract

<abstract> <p>Diabetic retinopathy (DR) is one of the main leading causes of visual impairment worldwide. The current study elucidates the role of JQ1 in DR. A diabetic model was constructed by STZ injection and a high-fat diet. After establishment of the diabetic model, rats were assigned to treatment groups: 1) control, 2) diabetic model, and 3) diabetic+JQ1 model. <italic>In vitro</italic> Transwell and wound-healing assays were used to measure BV2 cell viability by stimulation with low glucose and high glucose with or without JQ1 and 740Y-P. Pathological methods were used to analyze DR, and Western blotting was used to analyze protein expression. Identification of enriched pathways in DR was performed by bioinformatics. Histopathological examination demonstrated that JQ1 rescued the loss of retinal cells and increased the thickness of retinal layers in diabetic rats. JQ1 attenuated high glucose-stimulated BV2 microglial motility and migration. The bioinformatics analysis implied that the Pl3K-Akt signaling pathway was enriched in DR. JQ1 decreased the phosphorylation of PI3K and AKT as well as the immunostaining of PI3K in BV2 cells. 740Y-P (a PI3K agonist) significantly reversed the decrease in p-PI3K and p-AK in BV2 cells. Additionally, JQ1 decreased the protein expression of p-PI3K, p-AKT, and MMP2/9 and immunostaining of PI3K in retinal tissues of rats. JQ1 suppresses the PI3K/Akt cascade by targeting MMP expression, thus decreasing the viability and invasion capacity of retinal microglia, suggesting an interesting treatment target for DR.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3