Time-of-flight completion in ultrasound computed tomography based on the singular value threshold algorithm

Author:

Fang Xiaoyue1,Zhou Ran1,Gan Haitao1,Ding Mingyue23,Yuchi Ming23

Affiliation:

1. School of Computer Science, Hubei University of Technology, No. 28, Nanli Road, Hongshan District, Wuhan, China

2. School of Life Science and Technology, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Hongshan District, Wuhan, China

3. Wuhan Wesee Medical Imaging Co. LTD, East Lake High-tech Creation Zone, Wutong Lake District, Ezhou, China

Abstract

<abstract> <p>Ultrasound computed tomography (USCT) has been developed for breast tumor screening. The sound-speed modal of USCT can provide quantitative sound-speed values to help tumor diagnosis. Time-of-flight (TOF) is the critical input in sound-speed reconstruction. However, we found that the missing data problem in the detected TOF causes artifacts on the reconstructed sound-speed images, which may affect the tumor identification. In this study, to address the missing TOF data problem, we first adopted the singular value threshold (SVT) algorithm to complete the TOF matrix. The threshold value in SVT is difficult to determine, so we proposed a selection strategy, that is, to enumerate the threshold values as the multiples of the maximum singular value of the incomplete matrix and then evaluate the image quality to select the proper threshold value. In the numerical breast phantom experiment, the artifacts are eliminated, and the accuracy is higher than the accuracy of the compared methods. In the in vivo experiment, we reconstructed the sound-speed image of the breast of a volunteer with invasive breast cancer, and the SVT algorithm improved the image sharpness. The completion of DTOF based on SVT gives better accuracy than the compared methods, but too large a threshold value decreases the accuracy. In the future, the selection method of the threshold value needs further research, and more USCT cases should be included in the experiments.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3