Analysis of single-cell RNA-sequencing data identifies a hypoxic tumor subpopulation associated with poor prognosis in triple-negative breast cancer

Author:

Shi Yi,Huang Xiaoqian,Du Zhaolan,Tan Jianjun

Abstract

<abstract> <p>Triple-negative breast cancer (TNBC) is an aggressive subtype of mammary carcinoma characterized by low expression levels of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Along with the rapid development of the single-cell RNA-sequencing (scRNA-seq) technology, the heterogeneity within the tumor microenvironment (TME) could be studied at a higher resolution level, facilitating an exploration of the mechanisms leading to poor prognosis during tumor progression. In previous studies, hypoxia was considered as an intrinsic characteristic of TME in solid tumors, which would activate downstream signaling pathways associated with angiogenesis and metastasis. Moreover, hypoxia-related genes (HRGs) based risk score models demonstrated nice performance in predicting the prognosis of TNBC patients. However, it is essential to further investigate the heterogeneity within hypoxic TME, such as intercellular communications. In the present study, utilizing single-sample Gene Set Enrichment Analysis (ssGSEA) and cell-cell communication analysis on the scRNA-seq data retrieved from Gene Expression Omnibus (GEO) database with accession number GSM4476488, we identified four tumor subpopulations with diverse functions, particularly a hypoxia-related one. Furthermore, results of cell-cell communication analysis revealed the dominant role of the hypoxic tumor subpopulation in angiogenesis- and metastasis-related signaling pathways as a signal sender. Consequently, regard the TNBC cohorts acquired from The Cancer Genome Atlas (TCGA) and GEO as train set and test set respectively, we constructed a risk score model with reliable capacity for the prediction of overall survival (OS), where <italic>ARTN</italic> and <italic>L1CAM</italic> were identified as risk factors promoting angiogenesis and metastasis of tumors. The expression of <italic>ARTN</italic> and <italic>L1CAM</italic> were further analyzed through tumor immune estimation resource (TIMER) platform. In conclusion, these two marker genes of the hypoxic tumor subpopulation played vital roles in tumor development, indicating poor prognosis in TNBC patients.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3