An abelian way approach to study random extended intervals and their ARMA processes

Author:

KAMDEM Babel Raïssa GUEMDJO1,KAMDEM Jules SADEFO2,OGOUYANDJOU Carlos3

Affiliation:

1. Advanced School of Economics and Commerce, University of Douala, Cameroon

2. Faculté d’Economie et MRE UR 209, Université de Montpellier, France

3. Institut de Mathématiques et de Sciences Physiques, Université Abomey-Calavi, Bénin

Abstract

<abstract><p>An extended interval is a range $ A = [\underline{A}, \overline{A}] $ where $ \underline{A} $ may be bigger than $ \overline{A} $. This is not really natural, but is what has been used as the definition of an extended interval so far. In the present work we introduce a new, natural, and very intuitive way to see an extended interval. From now on, an extended interval is a subset of the Cartesian product $ {\mathbb R}\times {\mathbb Z}_2 $, where $ {\mathbb Z}_2 = \{0, 1\} $ is the set of directions; the direction $ 0 $ is for increasing intervals, and the direction $ 1 $ for decreasing ones. For instance, $ [3, 6]\times\{1\} $ is the decreasing version of $ [6, 3] $. Thereafter, we introduce on the set of extended intervals a family of metrics $ d_\gamma $, depending on a function $ \gamma(t) $, and show that there exists a unique metric $ d_\gamma $ for which $ \gamma(t)dt $ is what we have called an "adapted measure". This unique metric has very good properties, is simple to compute, and has been implemented in the software $ R $. Furthermore, we use this metric to {define variability for random extended intervals. We further study extended interval-valued ARMA} time series and prove the Wold decomposition theorem for stationary extended interval-valued times series.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference27 articles.

1. Alefeld G, Herzberger J (2012) Introduction to interval computation. Academic press.

2. Bauch H, Neumaier A (1990) Interval methods for systems of equations. cambridge university press, Zamm-Z Angew Math Me 72: 590–590.

3. Bertoluzza C, Corral Blanco N, Salas A (1995) On a new class of distances between fuzzy numbers. Mathware soft comput 2.

4. Bierens HJ (2012) The wold decomposition. Available from: http://citeseerx.ist.psu.edu/viewdoc/summary?doi = 10.1.1.231.2308.

5. Billard L, Diday E (2000) Regression analysis for interval-valued data. In Data Analysis, Classification, and Related Methods, 369–374. Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3