Abstract
<p>In this article, we mainly study the global existence of multiple positive solutions for the logarithmic Schrödinger equation with a Coulomb type potential</p><p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} -\Delta u+V(\epsilon x) u = \lambda (I_\alpha * |u|^p)|u|^{p-1}+u \log u^2 \text { in } \mathbb{R}^3, \end{equation*} $\end{document} </tex-math></disp-formula></p><p>where $ u \in H^1(\mathbb{R}^3) $, $ \epsilon > 0 $, $ V $ is a continuous function with a global minimum, and Coulomb type energies with $ 0 < \alpha < 3 $ and $ p \geq 1 $. We explore the existence of local positive solutions without the functional having to be a combination of a $ C^1 $ functional and a convex semicontinuous functional, as is required in the global case.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference24 articles.
1. T. Cazenave, Stable solutions of the logarithmic Schrödinger equation, Nonlinear Anal., 7 (1983), 1127–1140. https://doi.org/10.1016/0362-546X(83)90022-6
2. T. Cazenave, An introduction to nonlinear Schrödinger equations, Universidade federal do Rio de Janeiro, Centro de ciências matemáticas e da natureza, Instituto de matemática, 1989.
3. T. Cazenave, A. Haraux, Équations d'évolution avec non linéarité logarithmique, Annales de la Faculté des sciences de Toulouse: Mathématiques, 2 (1980), 21–51. https://doi.org/10.5802/afst.543
4. I. Bialynicki-Birula, J. Mycielski, Nonlinear wave mechanics, Ann Phys-New York, 100 (1976), 62–93. https://doi.org/10.1016/0003-4916(76)90057-9
5. I. Bialynicki-Birula, J. Mycielski, Gaussons: solitons of the logarithmic Schrödinger equation, Phys Scripta, 20 (1979), 539. https://doi.org/10.1088/0031-8949/20/3-4/033