Fatigue detection method for UAV remote pilot based on multi feature fusion

Author:

Pan Lei,Yan Chongyao,Zheng Yuan,Fu Qiang,Zhang Yangjie,Lu Zhiwei,Zhao Zhiqing,Tian Jun

Abstract

<abstract> <p>In recent years, UAV industry is developing rapidly and vigorously. However, so far, there is no relevant research on the fatigue detection method for UAV remote pilot, which is the core technology to ensure the flight safety of UAV. Aiming at this problem, a fatigue detection method for UAV remote pilot is proposed in this paper. Specifically, we first build a UAV operator fatigue detection database (OFDD). By analyzing the fatigue features in the database, we find that multiple facial features are highly correlated to the fatigue state, especially the head posture, and the temporal information is essential for distinguish between yawn and speaking in the study of UAV remote pilot fatigue detection. Based on these findings, a fatigue detection method for UAV remote pilots was proposed by efficiently locating the related facial regions, a multiple features extraction module to extract the eye, mouth and head posture features, and an efficient temporal fatigue decision module based on SVM. The experimental results show that this method not only performs well on the traditional driver dataset, but also achieves an accuracy rate of 97.05%; and it achieves the highest detection accuracy rate of 97.32% on the UAV remote pilots fatigue detection dataset OFDD.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved SSD for crew fatigue driving detection algorithm;Seventh International Conference on Traffic Engineering and Transportation System (ICTETS 2023);2024-02-20

2. Aplicação da inteligência artificial na prevenção de acidentes de trabalho: uma revisão sistemática de literatura;Revista de Gestão e Secretariado (Management and Administrative Professional Review);2023-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3