Integrating molecular modeling methods to study the interaction between Azinphos-methyl and gold nanomaterials for environmental applications

Author:

Douass Oumaima1,Al-Mogren Muneerah Mogren2,Touil M'Hamed3,Dalbouha Samira4,Belmouden Moustapha4,Samoudi Bousselham1,Sanchez-cortes Santiago5

Affiliation:

1. Intelligent System Design Laboratory, Research Team: Optics, Materials and Systems, Department of Physics, Faculty of Sciences, Abdelmalek Essâadi University, P.O. Box. 2121, M' Hannech Ⅱ, 93030 Tétouan, Morocco

2. Department of Chemistry, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

3. Materials Science and Sustainable Energy Laboratory, Department of Chemistry, Faculty of Science, Abdelmalek Essaâdi University, P.O. Box 2121, M' Hannech Ⅱ, 93030 Tétouan, Morocco

4. Organic Chemistry and Physical Chemistry Laboratory, Research Team: Molecular Modeling, Materials, and Environment, Department of Chemistry, Faculty of Sciences, Ibn Zohr University, P.O. Box 8106, Agadir, Morocco

5. Instituto de Estructura de la Materia, CSIC, Madrid 28006, Spain

Abstract

<p>We utilized density functional theory (DFT) to investigate the electronic structure and Raman spectrum of Azinphos-methyl (AzM) (<italic>C</italic><sub><italic>10</italic></sub><italic>H</italic><sub><italic>12</italic></sub><italic>N</italic><sub><italic>3</italic></sub><italic>O</italic><sub><italic>3</italic></sub><italic>PS</italic><sub><italic>2</italic></sub>) both in isolation and in combination with gold nanoclusters (Au<sub>n</sub>, n = 2, 4, and 6). The research highlights a significant enhancement in Raman activity with increasing gold atom count from AzM-Au<sub>2</sub> to AzM-Au<sub>4</sub>. The DFT calculations provide a comprehensive analysis of various electronic properties, including <italic>HOMO</italic> and <italic>LUMO</italic> energies, gap energy (<italic>Eg</italic>), ionization potential (<italic>IP</italic>), and electron affinity (<italic>EA</italic>), comparing these with experimental results from Liu et al. (2012). We also examined reactivity parameters, electrostatic properties, molecular electrostatic potential (MEP), Natural bond orbital (NBO) analysis, and atoms-in-molecules theory (AIM). The binding energy trends among the (AzM)-Aun complexes revealed a hierarchy: (AzM)-Au<sub>2</sub> &gt; (AzM)-Au<sub>6</sub> &gt; (AzM)-Au<sub>4</sub>. Monte Carlo simulations were used to explore AzM interactions with gold nanoparticles (AuNPs) of various shapes and sizes, indicating that increased Raman intensity correlates with higher global electrophilicity and total polarizability. The results suggested that the stability of the complexes improves with more gold atoms, as evidenced by greater charge transfer, interaction energies, and second-order stabilization energies (<italic>E</italic><sup><italic>2</italic></sup>). Among the complexes studied, AzM-Au<sub>2</sub> showed the highest stability. Monte Carlo simulations revealed that the right circular cone-shaped structure, especially at 7 nm, demonstrated the most negative adsorption energy, indicating stronger adsorption interactions. This research fills a gap in previous studies on AzM, providing valuable insights and serving as a reference for future work.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3