Affiliation:
1. 1Kumho America Technical Center, 711 Kumho Drive, Akron, Ohio 44333, USA
2. 2Corresponding author: E-mail: HAboutorabi@KumhoTech.com
3. 3Presently at: Nexen Tire America Technology Center
Abstract
Abstract
REFERENCE: H. M. R. Aboutorabi and L. Kung, “Application of Coupled Structural Acoustic Analysis and Sensitivity Calculations to a Tire Noise Problem,” Tire Science and Technology, TSTCA, Vol. 40, No. 1, January – March 2012, pp. 25–41.
ABSTRACT: Tire qualification for an original equipment (OE) program consists of several rounds of submissions by the tire manufacturer for evaluation by the vehicle manufacturer. Tires are evaluated both subjectively, where the tire performance is rated by an expert driver, and objectively, where sensors and testing instruments are used to measure the tire performance. At the end of each round of testing the evaluation results are shared and requirements for performance improvement for the next round are communicated with the tire manufacturer. As building and testing is both expensive and time consuming predictive modeling and simulation analysis that can be applied to the performance of the tire is of great interest and value.
This paper presents an application of finite element analysis (FEA) modeling along with experimental verification to solve tire noise objections at certain frequencies raised by an original equipment manufacturer (OEM) account. Coupled structural-acoustic analysis method was used to find modal characteristics of the tire at the objectionable frequencies. Sensitivity calculations were then carried out to evaluate the strength of contribution from each tire component to the identified modes. Based on these findings changes to the construction were proposed and implemented that addressed the noise issue.
Subject
Polymers and Plastics,Mechanics of Materials,Automotive Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献