Characterisation of the nanotubular oxide layer formed on the ultrafine-grained titanium

Author:

Barjaktarević Dragana Ranko,Rakin Marko P.,Djokić Veljko R.

Abstract

Commercially pure titanium (cpTi) and titanium alloys are metallic implant materials usually used in dentistry and orthopaedics.  In order to improve implant properties, Ti-based materials may be surface modified by different procedures. One of the most attractive methods is electrochemical anodization, as a method for obtaining nanotubular oxide layer on the material surface, aiming at improving mechanical, biological and corrosion properties of the metallic biomaterials. In the present study, ultrafine-grained titanium (UFG cpTi) was obtained by high pressure torsion (HPT) under a pressure of 4.1 GPa with a rotational speed of 0.2 rpm, up to 5 rotations at room temperature. In order to form homogeneous nanotubular oxide layer on the UFG cpTi, the electrochemical anodization was performed in phosphoric acid containing 0.5 wt. % of NaF electrolyte during anodizing times of 30, 60 and 90 minutes. The characterisation of thus formed nanotubes was performed using the scanning electron microscopy (SEM), while the surface topography was analysed using the atomic force microscopy (AFM). The results show that the electrochemical anodization process leads to an enhanced roughness of the surface. The mechanical behaviour of the UFG cpTi after the electrochemical anodization process is estimated using the nanoindentation technique. Obtained results show that anodized material has lower value of nanohardness than non-anodized material. Moreover, anodized UFG cpTi has lower modulus of elasticity than non-anodized UFG cpTi and the value is close to those observed in bones.

Publisher

Association of Metallurgical Engineers of Serbia

Subject

Metals and Alloys,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3