Py-GC–MS Investigation of Pyrolysis Behaviors and Decomposition Products of α- and β-2,7,11-cembratriene-4,6-diols

Author:

Huang Shen1,Yang Chen1,Ma Ning1,Zhou Lifeng1,Jia Chunxiao1,Wei Tao1,Mao Doubin1

Affiliation:

1. Zhengzhou University of Light Industry

Abstract

Py-GC–MS Investigation of Pyrolysis Behaviors and Decomposition Products of α- and β-2,7,11-cembratriene-4,6-diols May 1, 2022 Shen Huang, Chen Yang, Ning Ma, Lifeng Zhou, Chunxiao Jia, Tao Wei, Duobin Mao LCGC North America, May 2022, Volume 40, Issue 5 Pages: 223–228 To study the thermal stability of cembratriene, α- and β-2, 7, 11-cembratriene-4, 6-diols (α- and β-CBT) were isolated from tobacco leaves. Thermogravimetric (TG) and differential thermogravimetric (DTG) analyses were used to evaluate the cleavage differences between the two compounds. The TGA results showed the peak temperatures (Tp) were 263.3 °C and 254.1 °C with the largest weight loss rate; the significant weight losses were 90.96% and 99.45%. Pyrolysis gas chromatography–mass spectrometry (Py-GC–MS) was employed for the pyrolysis products at different temperatures (300, 600, and 900 °C) under either N2 or an O2:N2 (10%:90%) mixture. The results showed that the major pyrolysates from α- and β-CBT were simple hydrocarbons, such as toluene, 1, 4-pentadiene, and p-xylene, as well as several important flavor compounds, such as 2-methylfuran, benzaldehyde, and 4-methylbenzaldehyde. More pyrolysis products were obtained at higher temperatures, and almost all of the harmful aromatic ingredients were produced at 900 °C. Importantly, solanone, a significant flavor component, was only obtained from the pyrolysis of α-CBT under 10% O2 in N2 at both 600 and 900 °C. The number of the pyrolysates changed with the change in pyrolysis temperature and the presence of oxygen. The study of the thermal behavior and pyrolysis products of these terpenoids could possibly suggest flavor precursors that could be used to provide specific flavors.

Publisher

Multimedia Pharma Sciences, LLC

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3